License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2018.52
URN: urn:nbn:de:0030-drops-100003
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/10000/
Keikha, Vahideh ;
van de Kerkhof, Mees ;
van Kreveld, Marc ;
Kostitsyna, Irina ;
Löffler, Maarten ;
Staals, Frank ;
Urhausen, Jérôme ;
Vermeulen, Jordi L. ;
Wiratma, Lionov
Convex Partial Transversals of Planar Regions
Abstract
We consider the problem of testing, for a given set of planar regions R and an integer k, whether there exists a convex shape whose boundary intersects at least k regions of R. We provide polynomial-time algorithms for the case where the regions are disjoint axis-aligned rectangles or disjoint line segments with a constant number of orientations. On the other hand, we show that the problem is NP-hard when the regions are intersecting axis-aligned rectangles or 3-oriented line segments. For several natural intermediate classes of shapes (arbitrary disjoint segments, intersecting 2-oriented segments) the problem remains open.
BibTeX - Entry
@InProceedings{keikha_et_al:LIPIcs:2018:10000,
author = {Vahideh Keikha and Mees van de Kerkhof and Marc van Kreveld and Irina Kostitsyna and Maarten L{\"o}ffler and Frank Staals and J{\'e}r{\^o}me Urhausen and Jordi L. Vermeulen and Lionov Wiratma},
title = {{Convex Partial Transversals of Planar Regions}},
booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)},
pages = {52:1--52:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-094-1},
ISSN = {1868-8969},
year = {2018},
volume = {123},
editor = {Wen-Lian Hsu and Der-Tsai Lee and Chung-Shou Liao},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/10000},
URN = {urn:nbn:de:0030-drops-100003},
doi = {10.4230/LIPIcs.ISAAC.2018.52},
annote = {Keywords: computational geometry, algorithms, NP-hardness, convex transversals}
}
Keywords: |
|
computational geometry, algorithms, NP-hardness, convex transversals |
Collection: |
|
29th International Symposium on Algorithms and Computation (ISAAC 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
06.12.2018 |