License:
Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2018.53
URN: urn:nbn:de:0030-drops-100019
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/10001/
Pilz, Alexander ;
Schnider, Patrick
Extending the Centerpoint Theorem to Multiple Points
Abstract
The centerpoint theorem is a well-known and widely used result in discrete geometry. It states that for any point set P of n points in R^d, there is a point c, not necessarily from P, such that each halfspace containing c contains at least n/(d+1) points of P. Such a point c is called a centerpoint, and it can be viewed as a generalization of a median to higher dimensions. In other words, a centerpoint can be interpreted as a good representative for the point set P. But what if we allow more than one representative? For example in one-dimensional data sets, often certain quantiles are chosen as representatives instead of the median.
We present a possible extension of the concept of quantiles to higher dimensions. The idea is to find a set Q of (few) points such that every halfspace that contains one point of Q contains a large fraction of the points of P and every halfspace that contains more of Q contains an even larger fraction of P. This setting is comparable to the well-studied concepts of weak epsilon-nets and weak epsilon-approximations, where it is stronger than the former but weaker than the latter. We show that for any point set of size n in R^d and for any positive alpha_1,...,alpha_k where alpha_1 <= alpha_2 <= ... <= alpha_k and for every i,j with i+j <= k+1 we have that (d-1)alpha_k+alpha_i+alpha_j <= 1, we can find Q of size k such that each halfspace containing j points of Q contains least alpha_j n points of P. For two-dimensional point sets we further show that for every alpha and beta with alpha <= beta and alpha+beta <= 2/3 we can find Q with |Q|=3 such that each halfplane containing one point of Q contains at least alpha n of the points of P and each halfplane containing all of Q contains at least beta n points of P. All these results generalize to the setting where P is any mass distribution. For the case where P is a point set in R^2 and |Q|=2, we provide algorithms to find such points in time O(n log^3 n).
BibTeX - Entry
@InProceedings{pilz_et_al:LIPIcs:2018:10001,
author = {Alexander Pilz and Patrick Schnider},
title = {{Extending the Centerpoint Theorem to Multiple Points}},
booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)},
pages = {53:1--53:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-094-1},
ISSN = {1868-8969},
year = {2018},
volume = {123},
editor = {Wen-Lian Hsu and Der-Tsai Lee and Chung-Shou Liao},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/10001},
URN = {urn:nbn:de:0030-drops-100019},
doi = {10.4230/LIPIcs.ISAAC.2018.53},
annote = {Keywords: centerpoint, point sets, Tukey depth}
}
Keywords: |
|
centerpoint, point sets, Tukey depth |
Collection: |
|
29th International Symposium on Algorithms and Computation (ISAAC 2018) |
Issue Date: |
|
2018 |
Date of publication: |
|
06.12.2018 |