License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2019.1
URN: urn:nbn:de:0030-drops-100949
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/10094/
Agrawal, Shipra ;
Shadravan, Mohammad ;
Stein, Cliff
Submodular Secretary Problem with Shortlists
Abstract
In submodular k-secretary problem, the goal is to select k items in a randomly ordered input so as to maximize the expected value of a given monotone submodular function on the set of selected items. In this paper, we introduce a relaxation of this problem, which we refer to as submodular k-secretary problem with shortlists. In the proposed problem setting, the algorithm is allowed to choose more than k items as part of a shortlist. Then, after seeing the entire input, the algorithm can choose a subset of size k from the bigger set of items in the shortlist. We are interested in understanding to what extent this relaxation can improve the achievable competitive ratio for the submodular k-secretary problem. In particular, using an O(k) sized shortlist, can an online algorithm achieve a competitive ratio close to the best achievable offline approximation factor for this problem? We answer this question affirmatively by giving a polynomial time algorithm that achieves a 1-1/e-epsilon-O(k^{-1}) competitive ratio for any constant epsilon>0, using a shortlist of size eta_epsilon(k)=O(k). This is especially surprising considering that the best known competitive ratio (in polynomial time) for the submodular k-secretary problem is (1/e-O(k^{-1/2}))(1-1/e) [Thomas Kesselheim and Andreas Tönnis, 2017].
The proposed algorithm also has significant implications for another important problem of submodular function maximization under random order streaming model and k-cardinality constraint. We show that our algorithm can be implemented in the streaming setting using a memory buffer of size eta_epsilon(k)=O(k) to achieve a 1-1/e-epsilon-O(k^{-1}) approximation. This result substantially improves upon [Norouzi-Fard et al., 2018], which achieved the previously best known approximation factor of 1/2 + 8 x 10^{-14} using O(k log k) memory; and closely matches the known upper bound for this problem [McGregor and Vu, 2017].
BibTeX - Entry
@InProceedings{agrawal_et_al:LIPIcs:2018:10094,
author = {Shipra Agrawal and Mohammad Shadravan and Cliff Stein},
title = {{Submodular Secretary Problem with Shortlists}},
booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
pages = {1:1--1:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-095-8},
ISSN = {1868-8969},
year = {2018},
volume = {124},
editor = {Avrim Blum},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2018/10094},
URN = {urn:nbn:de:0030-drops-100949},
doi = {10.4230/LIPIcs.ITCS.2019.1},
annote = {Keywords: Submodular Optimization, Secretary Problem, Streaming Algorithms}
}
Keywords: |
|
Submodular Optimization, Secretary Problem, Streaming Algorithms |
Collection: |
|
10th Innovations in Theoretical Computer Science Conference (ITCS 2019) |
Issue Date: |
|
2018 |
Date of publication: |
|
08.01.2019 |