License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2018.15
URN: urn:nbn:de:0030-drops-102169
Go to the corresponding LIPIcs Volume Portal

Chen, Hubie ; Jansen, Bart M. P. ; Pieterse, Astrid

Best-Case and Worst-Case Sparsifiability of Boolean CSPs

LIPIcs-IPEC-2018-15.pdf (0.5 MB)


We continue the investigation of polynomial-time sparsification for NP-complete Boolean Constraint Satisfaction Problems (CSPs). The goal in sparsification is to reduce the number of constraints in a problem instance without changing the answer, such that a bound on the number of resulting constraints can be given in terms of the number of variables n. We investigate how the worst-case sparsification size depends on the types of constraints allowed in the problem formulation (the constraint language). Two algorithmic results are presented. The first result essentially shows that for any arity k, the only constraint type for which no nontrivial sparsification is possible has exactly one falsifying assignment, and corresponds to logical OR (up to negations). Our second result concerns linear sparsification, that is, a reduction to an equivalent instance with O(n) constraints. Using linear algebra over rings of integers modulo prime powers, we give an elegant necessary and sufficient condition for a constraint type to be captured by a degree-1 polynomial over such a ring, which yields linear sparsifications. The combination of these algorithmic results allows us to prove two characterizations that capture the optimal sparsification sizes for a range of Boolean CSPs. For NP-complete Boolean CSPs whose constraints are symmetric (the satisfaction depends only on the number of 1 values in the assignment, not on their positions), we give a complete characterization of which constraint languages allow for a linear sparsification. For Boolean CSPs in which every constraint has arity at most three, we characterize the optimal size of sparsifications in terms of the largest OR that can be expressed by the constraint language.

BibTeX - Entry

  author =	{Hubie Chen and Bart M. P. Jansen and Astrid Pieterse},
  title =	{{Best-Case and Worst-Case Sparsifiability of Boolean CSPs}},
  booktitle =	{13th International Symposium on Parameterized and Exact  Computation (IPEC 2018)},
  pages =	{15:1--15:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Christophe Paul and Michal Pilipczuk},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-102169},
  doi =		{10.4230/LIPIcs.IPEC.2018.15},
  annote =	{Keywords: constraint satisfaction problems, kernelization, sparsification, lower bounds}

Keywords: constraint satisfaction problems, kernelization, sparsification, lower bounds
Collection: 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)
Issue Date: 2019
Date of publication: 05.02.2019

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI