License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2019.7
URN: urn:nbn:de:0030-drops-104117
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10411/
Go to the corresponding LIPIcs Volume Portal


Agrawal, Akanksha ; Guspiel, Grzegorz ; Madathil, Jayakrishnan ; Saurabh, Saket ; Zehavi, Meirav

Connecting the Dots (with Minimum Crossings)

pdf-format:
LIPIcs-SoCG-2019-7.pdf (2 MB)


Abstract

We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L'subseteq L such that the graph G=(P,L') is isomorphic to a graph in F and L' has at most k crossings. By G=(P,L'), we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment that connects them in L'. Intuitively, in Crossing Minimization, we have a set of locations of interest, and we want to build/draw/exhibit connections between them (where L indicates where it is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s,t)-path (a path whose endpoints are labeled). While the objective of seeking a solution with few crossings is of interest from a theoretical point of view, it is also well motivated by a wide range of practical considerations. For example, links/roads (such as highways) may be cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces.
As a starting point for a systematic study, we consider a special case of Crossing Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line segments such that each point in P belongs to exactly one line in D, and L does not contain line segments between points on the same line in D. Clearly, Crossing Minimization is the case where d=n - then, P is in general position. The case of d=2 is of interest not only because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied - specifically, it is Crossing Minimization where G=(P,L) is a (bipartite) graph with a so called two-layer drawing. For d=2, we consider three basic choices of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time, and (iii) existence of an O(k^2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability in subexponential parameterized time, and (ii) existence of an O(k^2)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership in XP.

BibTeX - Entry

@InProceedings{agrawal_et_al:LIPIcs:2019:10411,
  author =	{Akanksha Agrawal and Grzegorz Guspiel and Jayakrishnan Madathil and Saket Saurabh and Meirav Zehavi},
  title =	{{Connecting the Dots (with Minimum Crossings)}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Gill Barequet and Yusu Wang},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10411},
  URN =		{urn:nbn:de:0030-drops-104117},
  doi =		{10.4230/LIPIcs.SoCG.2019.7},
  annote =	{Keywords: crossing minimization, parameterized complexity, FPT algorithm, polynomial kernel, W[1]-hardness}
}

Keywords: crossing minimization, parameterized complexity, FPT algorithm, polynomial kernel, W[1]-hardness
Collection: 35th International Symposium on Computational Geometry (SoCG 2019)
Issue Date: 2019
Date of publication: 11.06.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI