License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2019.24
URN: urn:nbn:de:0030-drops-104288
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10428/
Chan, Timothy M.
Dynamic Geometric Data Structures via Shallow Cuttings
Abstract
We present new results on a number of fundamental problems about dynamic geometric data structures:
1) We describe the first fully dynamic data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in a 3D point set. The update times are near n^{11/12} for (i) and (ii), n^{7/8} for (iii) and (iv), and n^{2/3} for (v). Previously, sublinear bounds were known only for restricted "semi-online" settings [Chan, SODA 2002].
2) We slightly improve previous fully dynamic data structures for answering extreme point queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query time is O(log^2n), and the amortized update time is O(log^4n) instead of O(log^5n) [Chan, SODA 2006; Kaplan et al., SODA 2017].
3) We also improve previous fully dynamic data structures for maintaining the bichromatic closest pair between two 2D point sets and the diameter of a 2D point set. The amortized update time is O(log^4n) instead of O(log^7n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017].
BibTeX - Entry
@InProceedings{chan:LIPIcs:2019:10428,
author = {Timothy M. Chan},
title = {{Dynamic Geometric Data Structures via Shallow Cuttings}},
booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)},
pages = {24:1--24:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-104-7},
ISSN = {1868-8969},
year = {2019},
volume = {129},
editor = {Gill Barequet and Yusu Wang},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/10428},
URN = {urn:nbn:de:0030-drops-104288},
doi = {10.4230/LIPIcs.SoCG.2019.24},
annote = {Keywords: dynamic data structures, convex hulls, nearest neighbor search, closest pair, shallow cuttings}
}
Keywords: |
|
dynamic data structures, convex hulls, nearest neighbor search, closest pair, shallow cuttings |
Collection: |
|
35th International Symposium on Computational Geometry (SoCG 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
11.06.2019 |