License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.51
URN: urn:nbn:de:0030-drops-106276
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10627/
Dörfler, Julian ;
Ikenmeyer, Christian ;
Panova, Greta
On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions
Abstract
Geometric Complexity Theory as initiated by Mulmuley and Sohoni in two papers (SIAM J Comput 2001, 2008) aims to separate algebraic complexity classes via representation theoretic multiplicities in coordinate rings of specific group varieties. We provide the first toy setting in which a separation can be achieved for a family of polynomials via these multiplicities.
Mulmuley and Sohoni's papers also conjecture that the vanishing behavior of multiplicities would be sufficient to separate complexity classes (so-called occurrence obstructions). The existence of such strong occurrence obstructions has been recently disproven in 2016 in two successive papers, Ikenmeyer-Panova (Adv. Math.) and Bürgisser-Ikenmeyer-Panova (J. AMS). This raises the question whether separating group varieties via representation theoretic multiplicities is stronger than separating them via occurrences. We provide first finite settings where a separation via multiplicities can be achieved, while the separation via occurrences is provably impossible. These settings are surprisingly simple and natural: We study the variety of products of homogeneous linear forms (the so-called Chow variety) and the variety of polynomials of bounded border Waring rank (i.e. a higher secant variety of the Veronese variety).
As a side result we prove a slight generalization of Hermite's reciprocity theorem, which proves Foulkes' conjecture for a new infinite family of cases.
BibTeX - Entry
@InProceedings{drfler_et_al:LIPIcs:2019:10627,
author = {Julian D{\"o}rfler and Christian Ikenmeyer and Greta Panova},
title = {{On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions}},
booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
pages = {51:1--51:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-109-2},
ISSN = {1868-8969},
year = {2019},
volume = {132},
editor = {Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/10627},
URN = {urn:nbn:de:0030-drops-106276},
doi = {10.4230/LIPIcs.ICALP.2019.51},
annote = {Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions}
}
Keywords: |
|
Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions |
Collection: |
|
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
04.07.2019 |