License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.51
URN: urn:nbn:de:0030-drops-106276
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10627/
Go to the corresponding LIPIcs Volume Portal


Dörfler, Julian ; Ikenmeyer, Christian ; Panova, Greta

On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

pdf-format:
LIPIcs-ICALP-2019-51.pdf (0.5 MB)


Abstract

Geometric Complexity Theory as initiated by Mulmuley and Sohoni in two papers (SIAM J Comput 2001, 2008) aims to separate algebraic complexity classes via representation theoretic multiplicities in coordinate rings of specific group varieties. We provide the first toy setting in which a separation can be achieved for a family of polynomials via these multiplicities.
Mulmuley and Sohoni's papers also conjecture that the vanishing behavior of multiplicities would be sufficient to separate complexity classes (so-called occurrence obstructions). The existence of such strong occurrence obstructions has been recently disproven in 2016 in two successive papers, Ikenmeyer-Panova (Adv. Math.) and Bürgisser-Ikenmeyer-Panova (J. AMS). This raises the question whether separating group varieties via representation theoretic multiplicities is stronger than separating them via occurrences. We provide first finite settings where a separation via multiplicities can be achieved, while the separation via occurrences is provably impossible. These settings are surprisingly simple and natural: We study the variety of products of homogeneous linear forms (the so-called Chow variety) and the variety of polynomials of bounded border Waring rank (i.e. a higher secant variety of the Veronese variety).
As a side result we prove a slight generalization of Hermite's reciprocity theorem, which proves Foulkes' conjecture for a new infinite family of cases.

BibTeX - Entry

@InProceedings{drfler_et_al:LIPIcs:2019:10627,
  author =	{Julian D{\"o}rfler and Christian Ikenmeyer and Greta Panova},
  title =	{{On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{51:1--51:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10627},
  URN =		{urn:nbn:de:0030-drops-106276},
  doi =		{10.4230/LIPIcs.ICALP.2019.51},
  annote =	{Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions}
}

Keywords: Algebraic complexity theory, geometric complexity theory, Waring rank, plethysm coefficients, occurrence obstructions, multiplicity obstructions
Collection: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Issue Date: 2019
Date of publication: 04.07.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI