License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.55
URN: urn:nbn:de:0030-drops-106314
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10631/
Go to the corresponding LIPIcs Volume Portal


Equi, Massimo ; Grossi, Roberto ; Mäkinen, Veli ; Tomescu, Alexandru I.

On the Complexity of String Matching for Graphs

pdf-format:
LIPIcs-ICALP-2019-55.pdf (0.7 MB)


Abstract

Exact string matching in labeled graphs is the problem of searching paths of a graph G=(V,E) such that the concatenation of their node labels is equal to the given pattern string P[1..m]. This basic problem can be found at the heart of more complex operations on variation graphs in computational biology, of query operations in graph databases, and of analysis operations in heterogeneous networks.
We prove a conditional lower bound stating that, for any constant epsilon>0, an O(|E|^{1 - epsilon} m)-time, or an O(|E| m^{1 - epsilon})-time algorithm for exact string matching in graphs, with node labels and patterns drawn from a binary alphabet, cannot be achieved unless the Strong Exponential Time Hypothesis (SETH) is false. This holds even if restricted to undirected graphs with maximum node degree two, i.e. to zig-zag matching in bidirectional strings, or to deterministic directed acyclic graphs whose nodes have maximum sum of indegree and outdegree three. These restricted cases make the lower bound stricter than what can be directly derived from related bounds on regular expression matching (Backurs and Indyk, FOCS'16). In fact, our bounds are tight in the sense that lowering the degree or the alphabet size yields linear-time solvable problems.
An interesting corollary is that exact and approximate matching are equally hard (quadratic time) in graphs under SETH. In comparison, the same problems restricted to strings have linear-time vs quadratic-time solutions, respectively (approximate pattern matching having also a matching SETH lower bound (Backurs and Indyk, STOC'15)).

BibTeX - Entry

@InProceedings{equi_et_al:LIPIcs:2019:10631,
  author =	{Massimo Equi and Roberto Grossi and Veli M{\"a}kinen and Alexandru I. Tomescu},
  title =	{{On the Complexity of String Matching for Graphs}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{55:1--55:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10631},
  URN =		{urn:nbn:de:0030-drops-106314},
  doi =		{10.4230/LIPIcs.ICALP.2019.55},
  annote =	{Keywords: exact pattern matching, graph query, graph search, labeled graphs, string matching, string search, strong exponential time hypothesis, heterogeneous }
}

Keywords: exact pattern matching, graph query, graph search, labeled graphs, string matching, string search, strong exponential time hypothesis, heterogeneous
Collection: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Issue Date: 2019
Date of publication: 04.07.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI