License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2019.19
URN: urn:nbn:de:0030-drops-109634
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/10963/
Go to the corresponding LIPIcs Volume Portal


Haak, Anselm ; Kontinen, Juha ; Müller, Fabian ; Vollmer, Heribert ; Yang, Fan

Counting of Teams in First-Order Team Logics

pdf-format:
LIPIcs-MFCS-2019-19.pdf (0.5 MB)


Abstract

We study descriptive complexity of counting complexity classes in the range from #P to #*NP. A corollary of Fagin's characterization of NP by existential second-order logic is that #P can be logically described as the class of functions counting satisfying assignments to free relation variables in first-order formulae. In this paper we extend this study to classes beyond #P and extensions of first-order logic with team semantics. These team-based logics are closely related to existential second-order logic and its fragments, hence our results also shed light on the complexity of counting for extensions of first-order logic in Tarski's semantics. Our results show that the class #*NP can be logically characterized by independence logic and existential second-order logic, whereas dependence logic and inclusion logic give rise to subclasses of #*NP and #P, respectively. We also study the function class generated by inclusion logic and relate it to the complexity class TotP, which is a subclass of #P. Our main technical result shows that the problem of counting satisfying assignments for monotone Boolean Sigma_1-formulae is #*NP-complete with respect to Turing reductions as well as complete for the function class generated by dependence logic with respect to first-order reductions.

BibTeX - Entry

@InProceedings{haak_et_al:LIPIcs:2019:10963,
  author =	{Anselm Haak and Juha Kontinen and Fabian M{\"u}ller and Heribert Vollmer and Fan Yang},
  title =	{{Counting of Teams in First-Order Team Logics}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{19:1--19:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Peter Rossmanith and Pinar Heggernes and Joost-Pieter Katoen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10963},
  URN =		{urn:nbn:de:0030-drops-109634},
  doi =		{10.4230/LIPIcs.MFCS.2019.19},
  annote =	{Keywords: team-based logics, counting classes, finite model theory, descriptive complexity}
}

Keywords: team-based logics, counting classes, finite model theory, descriptive complexity
Collection: 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)
Issue Date: 2019
Date of publication: 20.08.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI