License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2019.15
URN: urn:nbn:de:0030-drops-114765
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11476/
Go to the corresponding LIPIcs Volume Portal


Foucaud, Florent ; Hocquard, Hervé ; Lajou, Dimitri ; Mitsou, Valia ; Pierron, Théo

Parameterized Complexity of Edge-Coloured and Signed Graph Homomorphism Problems

pdf-format:
LIPIcs-IPEC-2019-15.pdf (0.6 MB)


Abstract

We study the complexity of graph modification problems with respect to homomorphism-based colouring properties of edge-coloured graphs. A homomorphism from an edge-coloured graph G to an edge-coloured graph H is a vertex-mapping from G to H that preserves adjacencies and edge-colours. We consider the property of having a homomorphism to a fixed edge-coloured graph H, which generalises the classic vertex-colourability property. The question we are interested in is the following: given an edge-coloured graph G, can we perform k graph operations so that the resulting graph admits a homomorphism to H? The operations we consider are vertex-deletion, edge-deletion and switching (an operation that permutes the colours of the edges incident to a given vertex). Switching plays an important role in the theory of signed graphs, that are 2-edge-coloured graphs whose colours are the signs + and -. We denote the corresponding problems (parameterized by k) by Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring. These problems generalise the extensively studied H-Colouring problem (where one has to decide if an input graph admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that H-Colouring already captures the complexity of all fixed-target Constraint Satisfaction Problems.
Our main focus is on the case where H is an edge-coloured graph of order at most 2, a case that is already interesting since it includes standard problems such as Vertex Cover, Odd Cycle Transversal and Edge Bipartization. For such a graph H, we give a PTime/NP-complete complexity dichotomy for all three Vertex Deletion-H-Colouring, Edge Deletion-H-Colouring and Switching-H-Colouring problems. Then, we address their parameterized complexity. We show that all Vertex Deletion-H-Colouring and Edge Deletion-H-Colouring problems for such H are FPT. This is in contrast with the fact that already for some H of order 3, unless PTime = NP, none of the three considered problems is in XP, since 3-Colouring is NP-complete. We show that the situation is different for Switching-H-Colouring: there are three 2-edge-coloured graphs H of order 2 for which Switching-H-Colouring is W[1]-hard, and assuming the ETH, admits no algorithm in time f(k)n^{o(k)} for inputs of size n and for any computable function f. For the other cases, Switching-H-Colouring is FPT.

BibTeX - Entry

@InProceedings{foucaud_et_al:LIPIcs:2019:11476,
  author =	{Florent Foucaud and Herv{\'e} Hocquard and Dimitri Lajou and Valia Mitsou and Th{\'e}o Pierron},
  title =	{{Parameterized Complexity of Edge-Coloured and Signed Graph Homomorphism Problems}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Bart M. P. Jansen and Jan Arne Telle},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2019/11476},
  URN =		{urn:nbn:de:0030-drops-114765},
  doi =		{10.4230/LIPIcs.IPEC.2019.15},
  annote =	{Keywords: Graph homomorphism, Graph modification, Edge-coloured graph, Signed graph}
}

Keywords: Graph homomorphism, Graph modification, Edge-coloured graph, Signed graph
Collection: 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)
Issue Date: 2019
Date of publication: 04.12.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI