License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CSL.2020.19
URN: urn:nbn:de:0030-drops-116625
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/11662/
Go to the corresponding LIPIcs Volume Portal


Demri, Stéphane ; Lozes, Etienne ; Mansutti, Alessio

Internal Calculi for Separation Logics

pdf-format:
LIPIcs-CSL-2020-19.pdf (0.7 MB)


Abstract

We present a general approach to axiomatise separation logics with heaplet semantics with no external features such as nominals/labels. To start with, we design the first (internal) Hilbert-style axiomatisation for the quantifier-free separation logic SL(∗, -*). We instantiate the method by introducing a new separation logic with essential features: it is equipped with the separating conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply our approach for its axiomatisation. As a by-product of our method, we also establish the exact expressive power of this new logic and we show PSpace-completeness of its satisfiability problem.

BibTeX - Entry

@InProceedings{demri_et_al:LIPIcs:2020:11662,
  author =	{St{\'e}phane Demri and Etienne Lozes and Alessio Mansutti},
  title =	{{Internal Calculi for Separation Logics}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Maribel Fern{\'a}ndez and Anca Muscholl},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/11662},
  URN =		{urn:nbn:de:0030-drops-116625},
  doi =		{10.4230/LIPIcs.CSL.2020.19},
  annote =	{Keywords: Separation logic, internal calculus, adjunct/quantifier elimination}
}

Keywords: Separation logic, internal calculus, adjunct/quantifier elimination
Collection: 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)
Issue Date: 2020
Date of publication: 06.01.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI