License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagRep.9.8.49
URN: urn:nbn:de:0030-drops-116843
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11684/
Go back to Dagstuhl Reports


Backofen, Rolf ; Mandel-Gutfreund, Yael ; Ohler, Uwe ; Varani, Gabriele
Weitere Beteiligte (Hrsg. etc.): Rolf Backofen and Yael Mandel-Gutfreund and Uwe Ohler and Gabriele Varani

Advances and Challenges in Protein-RNA Recognition, Regulation and Prediction (Dagstuhl Seminar 19342)

pdf-format:
dagrep_v009_i008_p049_19342.pdf (4 MB)


Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 19342 ``Advances and Challenges in Protein-RNA Recognition, Regulation and Prediction''.

BibTeX - Entry

@Article{backofen_et_al:DR:2019:11684,
  author =	{Rolf Backofen and Yael Mandel-Gutfreund and Uwe Ohler and Gabriele Varani},
  title =	{{Advances and Challenges in Protein-RNA Recognition, Regulation and Prediction (Dagstuhl Seminar 19342)}},
  pages =	{49--69},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2019},
  volume =	{9},
  number =	{8},
  editor =	{Rolf Backofen and Yael Mandel-Gutfreund and Uwe Ohler and Gabriele Varani},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2019/11684},
  URN =		{urn:nbn:de:0030-drops-116843},
  doi =		{10.4230/DagRep.9.8.49},
  annote =	{Keywords: Machine learning, algorithms, genomics analysis, gene expression net- works, big data analysis, quantitative prediction, proteins, RNA, CLIP-Seq}
}

Keywords: Machine learning, algorithms, genomics analysis, gene expression net- works, big data analysis, quantitative prediction, proteins, RNA, CLIP-Seq
Collection: Dagstuhl Reports, Volume 9, Issue 8
Issue Date: 2019
Date of publication: 20.12.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI