License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2020.40
URN: urn:nbn:de:0030-drops-119018
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/11901/
Go to the corresponding LIPIcs Volume Portal


Blondin, Michael ; Esparza, Javier ; Genest, Blaise ; Helfrich, Martin ; Jaax, Stefan

Succinct Population Protocols for Presburger Arithmetic

pdf-format:
LIPIcs-STACS-2020-40.pdf (0.6 MB)


Abstract

In [Dana Angluin et al., 2006], Angluin et al. proved that population protocols compute exactly the predicates definable in Presburger arithmetic (PA), the first-order theory of addition. As part of this result, they presented a procedure that translates any formula φ of quantifier-free PA with remainder predicates (which has the same expressive power as full PA) into a population protocol with 2^?(poly(|φ|)) states that computes φ. More precisely, the number of states of the protocol is exponential in both the bit length of the largest coefficient in the formula, and the number of nodes of its syntax tree.
In this paper, we prove that every formula φ of quantifier-free PA with remainder predicates is computable by a leaderless population protocol with ?(poly(|φ|)) states. Our proof is based on several new constructions, which may be of independent interest. Given a formula φ of quantifier-free PA with remainder predicates, a first construction produces a succinct protocol (with ?(|φ|³) leaders) that computes φ; this completes the work initiated in [Michael Blondin et al., 2018], where we constructed such protocols for a fragment of PA. For large enough inputs, we can get rid of these leaders. If the input is not large enough, then it is small, and we design another construction producing a succinct protocol with one leader that computes φ. Our last construction gets rid of this leader for small inputs.

BibTeX - Entry

@InProceedings{blondin_et_al:LIPIcs:2020:11901,
  author =	{Michael Blondin and Javier Esparza and Blaise Genest and Martin Helfrich and Stefan Jaax},
  title =	{{Succinct Population Protocols for Presburger Arithmetic}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{40:1--40:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Christophe Paul and Markus Bl{\"a}ser},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/11901},
  URN =		{urn:nbn:de:0030-drops-119018},
  doi =		{10.4230/LIPIcs.STACS.2020.40},
  annote =	{Keywords: Population protocols, Presburger arithmetic, state complexity}
}

Keywords: Population protocols, Presburger arithmetic, state complexity
Collection: 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)
Issue Date: 2020
Date of publication: 04.03.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI