License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICDT.2020.22
URN: urn:nbn:de:0030-drops-119468
Go to the corresponding LIPIcs Volume Portal

Pagh, Rasmus ; Sivertsen, Johan

The Space Complexity of Inner Product Filters

LIPIcs-ICDT-2020-22.pdf (0.5 MB)


Motivated by the problem of filtering candidate pairs in inner product similarity joins we study the following inner product estimation problem: Given parameters d∈ℕ, α>β≥0 and unit vectors x,y∈ ℝ^d consider the task of distinguishing between the cases ⟨x,y⟩≤β and ⟨x,y⟩≥α where ⟨x,y⟩ = ∑_{i=1}^d x_i y_i is the inner product of vectors x and y. The goal is to distinguish these cases based on information on each vector encoded independently in a bit string of the shortest length possible. In contrast to much work on compressing vectors using randomized dimensionality reduction, we seek to solve the problem deterministically, with no probability of error. Inner product estimation can be solved in general via estimating ⟨x,y⟩ with an additive error bounded by ε = α - β. We show that d log₂ (√{1-β}/ε) ± Θ(d) bits of information about each vector is necessary and sufficient. Our upper bound is constructive and improves a known upper bound of d log₂(1/ε) + O(d) by up to a factor of 2 when β is close to 1. The lower bound holds even in a stronger model where one of the vectors is known exactly, and an arbitrary estimation function is allowed.

BibTeX - Entry

  author =	{Rasmus Pagh and Johan Sivertsen},
  title =	{{The Space Complexity of Inner Product Filters}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Carsten Lutz and Jean Christoph Jung},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-119468},
  doi =		{10.4230/LIPIcs.ICDT.2020.22},
  annote =	{Keywords: Similarity, estimation, dot product, filtering}

Keywords: Similarity, estimation, dot product, filtering
Collection: 23rd International Conference on Database Theory (ICDT 2020)
Issue Date: 2020
Date of publication: 11.03.2020
Supplementary Material: Video of the Presentation:

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI