The beta version of DROPS 2 is now publicly available! Check this page out at DROPS 2 now!



License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2020.66
URN: urn:nbn:de:0030-drops-124733
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12473/
Go to the corresponding LIPIcs Volume Portal


Govorov, Artem ; Cai, Jin-Yi ; Dyer, Martin

A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative Weights

pdf-format:
LIPIcs-ICALP-2020-66.pdf (0.7 MB)


Abstract

We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix A. Each symmetric matrix A defines a graph homomorphism function Z_A(⋅), also known as the partition function. Dyer and Greenhill [Martin E. Dyer and Catherine S. Greenhill, 2000] established a complexity dichotomy of Z_A(⋅) for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [Andrei Bulatov and Martin Grohe, 2005] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric A, either Z_A(G) is in polynomial time for all graphs G, or it is #P-hard for bounded degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [Leslie A. Goldberg et al., 2010] for Z_A(⋅) also holds for simple graphs, where A is any real symmetric matrix.

BibTeX - Entry

@InProceedings{govorov_et_al:LIPIcs:2020:12473,
  author =	{Artem Govorov and Jin-Yi Cai and Martin Dyer},
  title =	{{A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative Weights}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{66:1--66:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Artur Czumaj and Anuj Dawar and Emanuela Merelli},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12473},
  URN =		{urn:nbn:de:0030-drops-124733},
  doi =		{10.4230/LIPIcs.ICALP.2020.66},
  annote =	{Keywords: Graph homomorphism, Complexity dichotomy, Counting problems}
}

Keywords: Graph homomorphism, Complexity dichotomy, Counting problems
Collection: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Issue Date: 2020
Date of publication: 29.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI