License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2020.70
URN: urn:nbn:de:0030-drops-124774
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12477/
Go to the corresponding LIPIcs Volume Portal


Kavitha, Telikepalli

Popular Matchings with One-Sided Bias

pdf-format:
LIPIcs-ICALP-2020-70.pdf (0.5 MB)


Abstract

Let G = (A ∪ B,E) be a bipartite graph where A consists of agents or main players and B consists of jobs or secondary players. Every vertex has a strict ranking of its neighbors. A matching M is popular if for any matching N, the number of vertices that prefer M to N is at least the number that prefer N to M. Popular matchings always exist in G since every stable matching is popular.
A matching M is A-popular if for any matching N, the number of agents (i.e., vertices in A) that prefer M to N is at least the number of agents that prefer N to M. Unlike popular matchings, A-popular matchings need not exist in a given instance G and there is a simple linear time algorithm to decide if G admits an A-popular matching and compute one, if so.
We consider the problem of deciding if G admits a matching that is both popular and A-popular and finding one, if so. We call such matchings fully popular. A fully popular matching is useful when A is the more important side - so along with overall popularity, we would like to maintain "popularity within the set A". A fully popular matching is not necessarily a min-size/max-size popular matching and all known polynomial time algorithms for popular matching problems compute either min-size or max-size popular matchings. Here we show a linear time algorithm for the fully popular matching problem, thus our result shows a new tractable subclass of popular matchings.

BibTeX - Entry

@InProceedings{kavitha:LIPIcs:2020:12477,
  author =	{Telikepalli Kavitha},
  title =	{{Popular Matchings with One-Sided Bias}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{70:1--70:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Artur Czumaj and Anuj Dawar and Emanuela Merelli},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12477},
  URN =		{urn:nbn:de:0030-drops-124774},
  doi =		{10.4230/LIPIcs.ICALP.2020.70},
  annote =	{Keywords: Bipartite graphs, Stable matchings, Gale-Shapley algorithm, LP-duality}
}

Keywords: Bipartite graphs, Stable matchings, Gale-Shapley algorithm, LP-duality
Collection: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Issue Date: 2020
Date of publication: 29.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI