License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2020.90
URN: urn:nbn:de:0030-drops-124978
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12497/
Go to the corresponding LIPIcs Volume Portal


Papp, Pál András ; Wattenhofer, Roger

A General Stabilization Bound for Influence Propagation in Graphs

pdf-format:
LIPIcs-ICALP-2020-90.pdf (0.5 MB)


Abstract

We study the stabilization time of a wide class of processes on graphs, in which each node can only switch its state if it is motivated to do so by at least a (1+λ)/2 fraction of its neighbors, for some 0 < λ < 1. Two examples of such processes are well-studied dynamically changing colorings in graphs: in majority processes, nodes switch to the most frequent color in their neighborhood, while in minority processes, nodes switch to the least frequent color in their neighborhood. We describe a non-elementary function f(λ), and we show that in the sequential model, the worst-case stabilization time of these processes can completely be characterized by f(λ). More precisely, we prove that for any ε > 0, O(n^(1+f(λ)+ε)) is an upper bound on the stabilization time of any proportional majority/minority process, and we also show that there are graph constructions where stabilization indeed takes Ω(n^(1+f(λ)-ε)) steps.

BibTeX - Entry

@InProceedings{papp_et_al:LIPIcs:2020:12497,
  author =	{P{\'a}l Andr{\'a}s Papp and Roger Wattenhofer},
  title =	{{A General Stabilization Bound for Influence Propagation in Graphs}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{90:1--90:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Artur Czumaj and Anuj Dawar and Emanuela Merelli},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12497},
  URN =		{urn:nbn:de:0030-drops-124978},
  doi =		{10.4230/LIPIcs.ICALP.2020.90},
  annote =	{Keywords: Minority process, Majority process}
}

Keywords: Minority process, Majority process
Collection: 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Issue Date: 2020
Date of publication: 29.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI