License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2020.1
URN: urn:nbn:de:0030-drops-125531
Go to the corresponding LIPIcs Volume Portal

Ben-Aroya, Avraham ; Doron, Dean ; Ta-Shma, Amnon

Near-Optimal Erasure List-Decodable Codes

LIPIcs-CCC-2020-1.pdf (0.6 MB)


A code ? ⊆ {0,1}^n̅ is (s,L) erasure list-decodable if for every word w, after erasing any s symbols of w, the remaining n̅-s symbols have at most L possible completions into a codeword of ?. Non-explicitly, there exist binary ((1-τ)n̅,L) erasure list-decodable codes with rate approaching τ and tiny list-size L = O(log 1/(τ)). Achieving either of these parameters explicitly is a natural open problem (see, e.g., [Guruswami and Indyk, 2002; Guruswami, 2003; Guruswami, 2004]). While partial progress on the problem has been achieved, no prior nontrivial explicit construction achieved rate better than Ω(τ²) or list-size smaller than Ω(1/τ). Furthermore, Guruswami showed no linear code can have list-size smaller than Ω(1/τ) [Guruswami, 2003]. We construct an explicit binary ((1-τ)n̅,L) erasure list-decodable code having rate τ^(1+γ) (for any constant γ > 0 and small τ) and list-size poly(log 1/τ), answering simultaneously both questions, and exhibiting an explicit non-linear code that provably beats the best possible linear code.
The binary erasure list-decoding problem is equivalent to the construction of explicit, low-error, strong dispersers outputting one bit with minimal entropy-loss and seed-length. For error ε, no prior explicit construction achieved seed-length better than 2log(1/ε) or entropy-loss smaller than 2log(1/ε), which are the best possible parameters for extractors. We explicitly construct an ε-error one-bit strong disperser with near-optimal seed-length (1+γ)log(1/ε) and entropy-loss O(log log1/ε).
The main ingredient in our construction is a new (and almost-optimal) unbalanced two-source extractor. The extractor extracts one bit with constant error from two independent sources, where one source has length n and tiny min-entropy O(log log n) and the other source has length O(log n) and arbitrarily small constant min-entropy rate. When instantiated as a balanced two-source extractor, it improves upon Raz’s extractor [Raz, 2005] in the constant error regime. The construction incorporates recent components and ideas from extractor theory with a delicate and novel analysis needed in order to solve dependency and error issues that prevented previous papers (such as [Li, 2015; Chattopadhyay and Zuckerman, 2019; Cohen, 2016]) from achieving the above results.

BibTeX - Entry

  author =	{Avraham Ben-Aroya and Dean Doron and Amnon Ta-Shma},
  title =	{{Near-Optimal Erasure List-Decodable Codes}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{1:1--1:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Shubhangi Saraf},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-125531},
  doi =		{10.4230/LIPIcs.CCC.2020.1},
  annote =	{Keywords: Dispersers, Erasure codes, List decoding, Ramsey graphs, Two-source extractors}

Keywords: Dispersers, Erasure codes, List decoding, Ramsey graphs, Two-source extractors
Collection: 35th Computational Complexity Conference (CCC 2020)
Issue Date: 2020
Date of publication: 17.07.2020

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI