License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2020.27
URN: urn:nbn:de:0030-drops-125791
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12579/
Go to the corresponding LIPIcs Volume Portal


Künnemann, Marvin ; Marx, Dániel

Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction

pdf-format:
LIPIcs-CCC-2020-27.pdf (0.8 MB)


Abstract

To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly k. More precisely, we aim to determine, for any finite constraint family, the optimal running time f(k)n^g(k) required to find satisfying assignments that set precisely k of the n variables to 1.
Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of g(k) into four regimes:
1) Brute force is essentially best-possible, i.e., g(k) = (1 ± o(1))k,
2) the best algorithms are as fast as current k-clique algorithms, i.e., g(k) = (ω/3 ± o(1))k,
3) the exponent has sublinear dependence on k with g(k) ∈ [Ω(∛k), O(√k)], or
4) the problem is fixed-parameter tractable, i.e., g(k) = O(1).
This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a f(k)n^(4√k)-time algorithm for SubsetSum with precedence constraints parameterized by the target k - particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.

BibTeX - Entry

@InProceedings{knnemann_et_al:LIPIcs:2020:12579,
  author =	{Marvin K{\"u}nnemann and D{\'a}niel Marx},
  title =	{{Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{27:1--27:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Shubhangi Saraf},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12579},
  URN =		{urn:nbn:de:0030-drops-125791},
  doi =		{10.4230/LIPIcs.CCC.2020.27},
  annote =	{Keywords: Fine-grained complexity theory, algorithmic classification theorem, multivariate algorithms and complexity, constraint satisfaction problems, satisfiability}
}

Keywords: Fine-grained complexity theory, algorithmic classification theorem, multivariate algorithms and complexity, constraint satisfaction problems, satisfiability
Collection: 35th Computational Complexity Conference (CCC 2020)
Issue Date: 2020
Date of publication: 17.07.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI