License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2020.5
URN: urn:nbn:de:0030-drops-126763
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12676/
Go to the corresponding LIPIcs Volume Portal


Ahn, Jungho ; Eiben, Eduard ; Kwon, O-joung ; Oum, Sang-il

A Polynomial Kernel for 3-Leaf Power Deletion

pdf-format:
LIPIcs-MFCS-2020-5.pdf (0.5 MB)


Abstract

For a non-negative integer ?, a graph G is an ?-leaf power of a tree T if V(G) is equal to the set of leaves of T, and distinct vertices v and w of G are adjacent if and only if the distance between v and w in T is at most ?. Given a graph G, 3-Leaf Power Deletion asks whether there is a set S ⊆ V(G) of size at most k such that G\S is a 3-leaf power of some treeT. We provide a polynomial kernel for this problem. More specifically, we present a polynomial-time algorithm for an input instance (G,k) to output an equivalent instance (G',k') such that k'≤ k and G' has at most O(k^14) vertices.

BibTeX - Entry

@InProceedings{ahn_et_al:LIPIcs:2020:12676,
  author =	{Jungho Ahn and Eduard Eiben and O-joung Kwon and Sang-il Oum},
  title =	{{A Polynomial Kernel for 3-Leaf Power Deletion}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Javier Esparza and Daniel Kr{\'a}ľ},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12676},
  URN =		{urn:nbn:de:0030-drops-126763},
  doi =		{10.4230/LIPIcs.MFCS.2020.5},
  annote =	{Keywords: ?-leaf power, parameterized algorithms, kernelization}
}

Keywords: ?-leaf power, parameterized algorithms, kernelization
Collection: 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
Issue Date: 2020
Date of publication: 18.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI