License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2020.77
URN: urn:nbn:de:0030-drops-127460
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12746/
Go to the corresponding LIPIcs Volume Portal


Parlant, Louis ; Rot, Jurriaan ; Silva, Alexandra ; Westerbaan, Bas

Preservation of Equations by Monoidal Monads

pdf-format:
LIPIcs-MFCS-2020-77.pdf (6 MB)


Abstract

If a monad T is monoidal, then operations on a set X can be lifted canonically to operations on TX. In this paper we study structural properties under which T preserves equations between those operations. It has already been shown that any monoidal monad preserves linear equations; affine monads preserve drop equations (where some variable appears only on one side, such as x⋅ y = y) and relevant monads preserve dup equations (where some variable is duplicated, such as x ⋅ x = x). We start the paper by showing a converse: if the monad at hand preserves a drop equation, then it must be affine. From this, we show that the problem whether a given (drop) equation is preserved is undecidable. A converse for relevance turns out to be more subtle: preservation of certain dup equations implies a weaker notion which we call n-relevance. Finally, we identify a subclass of equations such that their preservation is equivalent to relevance.

BibTeX - Entry

@InProceedings{parlant_et_al:LIPIcs:2020:12746,
  author =	{Louis Parlant and Jurriaan Rot and Alexandra Silva and Bas Westerbaan},
  title =	{{Preservation of Equations by Monoidal Monads}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{77:1--77:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Javier Esparza and Daniel Kr{\'a}ľ},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12746},
  URN =		{urn:nbn:de:0030-drops-127460},
  doi =		{10.4230/LIPIcs.MFCS.2020.77},
  annote =	{Keywords: monoidal monads, algebraic theories, preservation of equations}
}

Keywords: monoidal monads, algebraic theories, preservation of equations
Collection: 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
Issue Date: 2020
Date of publication: 18.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI