License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CONCUR.2020.45
URN: urn:nbn:de:0030-drops-128574
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12857/
Go to the corresponding LIPIcs Volume Portal


Raskin, Mikhail ; Weil-Kennedy, Chana ; Esparza, Javier

Flatness and Complexity of Immediate Observation Petri Nets

pdf-format:
LIPIcs-CONCUR-2020-45.pdf (0.6 MB)


Abstract

In a previous paper we introduced immediate observation (IO) Petri nets, a class of interest in the study of population protocols and enzymatic chemical networks. In the first part of this paper we show that IO nets are globally flat, and so their safety properties can be checked by efficient symbolic model checking tools using acceleration techniques, like FAST. In the second part we study Branching IO nets (BIO nets), whose transitions can create tokens. BIO nets extend both IO nets and communication-free nets, also called BPP nets, a widely studied class. We show that, while BIO nets are no longer globally flat, and their sets of reachable markings may be non-semilinear, they are still locally flat. As a consequence, the coverability and reachability problem for BIO nets, and even a certain set-parameterized version of them, are in PSPACE. This makes BIO nets the first natural net class with non-semilinear reachability relation for which the reachability problem is provably simpler than for general Petri nets.

BibTeX - Entry

@InProceedings{raskin_et_al:LIPIcs:2020:12857,
  author =	{Mikhail Raskin and Chana Weil-Kennedy and Javier Esparza},
  title =	{{Flatness and Complexity of Immediate Observation Petri Nets}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{45:1--45:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Igor Konnov and Laura Kov{\'a}cs},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12857},
  URN =		{urn:nbn:de:0030-drops-128574},
  doi =		{10.4230/LIPIcs.CONCUR.2020.45},
  annote =	{Keywords: Petri Nets, Reachability Analysis, Parameterized Verification, Flattability}
}

Keywords: Petri Nets, Reachability Analysis, Parameterized Verification, Flattability
Collection: 31st International Conference on Concurrency Theory (CONCUR 2020)
Issue Date: 2020
Date of publication: 26.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI