License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2020.1
URN: urn:nbn:de:0030-drops-128670
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12867/
Abu-Affash, A. Karim ;
Bhore, Sujoy ;
Carmi, Paz ;
Mitchell, Joseph S. B.
Planar Bichromatic Bottleneck Spanning Trees
Abstract
Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a geometric spanning tree of P, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree T, such that the length of the longest edge in T is minimized. In this paper, we show that this problem is NP-hard for points in general position. Our main contribution is a polynomial-time (8√2)-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck λ can be converted to a planar bichromatic spanning tree of bottleneck at most 8√2 λ.
BibTeX - Entry
@InProceedings{abuaffash_et_al:LIPIcs:2020:12867,
author = {A. Karim Abu-Affash and Sujoy Bhore and Paz Carmi and Joseph S. B. Mitchell},
title = {{Planar Bichromatic Bottleneck Spanning Trees}},
booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)},
pages = {1:1--1:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-162-7},
ISSN = {1868-8969},
year = {2020},
volume = {173},
editor = {Fabrizio Grandoni and Grzegorz Herman and Peter Sanders},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2020/12867},
URN = {urn:nbn:de:0030-drops-128670},
doi = {10.4230/LIPIcs.ESA.2020.1},
annote = {Keywords: Approximation Algorithms, Bottleneck Spanning Tree, NP-Hardness}
}
Keywords: |
|
Approximation Algorithms, Bottleneck Spanning Tree, NP-Hardness |
Collection: |
|
28th Annual European Symposium on Algorithms (ESA 2020) |
Issue Date: |
|
2020 |
Date of publication: |
|
26.08.2020 |