License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2020.24
URN: urn:nbn:de:0030-drops-128909
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12890/
Go to the corresponding LIPIcs Volume Portal


Bousquet, Nicolas ; Ito, Takehiro ; Kobayashi, Yusuke ; Mizuta, Haruka ; Ouvrard, Paul ; Suzuki, Akira ; Wasa, Kunihiro

Reconfiguration of Spanning Trees with Many or Few Leaves

pdf-format:
LIPIcs-ESA-2020-24.pdf (0.8 MB)


Abstract

Let G be a graph and T₁,T₂ be two spanning trees of G. We say that T₁ can be transformed into T₂ via an edge flip if there exist two edges e ∈ T₁ and f in T₂ such that T₂ = (T₁⧵e) ∪ f. Since spanning trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of edge flips, as observed in [Takehiro Ito et al., 2011].
We investigate the problem of determining, given two spanning trees T₁,T₂ with an additional property Π, if there exists an edge flip transformation from T₁ to T₂ keeping property Π all along.
First we show that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete.
We then prove that determining if there exists a transformation from T₁ to T₂ such that all the trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even restricted to split, bipartite or planar graphs. We complete this result by showing that the problem becomes polynomial for cographs, interval graphs and when k = n-2.

BibTeX - Entry

@InProceedings{bousquet_et_al:LIPIcs:2020:12890,
  author =	{Nicolas Bousquet and Takehiro Ito and Yusuke Kobayashi and Haruka Mizuta and Paul Ouvrard and Akira Suzuki and Kunihiro Wasa},
  title =	{{Reconfiguration of Spanning Trees with Many or Few Leaves}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Fabrizio Grandoni and Grzegorz Herman and Peter Sanders},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12890},
  URN =		{urn:nbn:de:0030-drops-128909},
  doi =		{10.4230/LIPIcs.ESA.2020.24},
  annote =	{Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms}
}

Keywords: combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time algorithms
Collection: 28th Annual European Symposium on Algorithms (ESA 2020)
Issue Date: 2020
Date of publication: 26.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI