License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2020.77
URN: urn:nbn:de:0030-drops-129432
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12943/
Go to the corresponding LIPIcs Volume Portal


Radoszewski, Jakub ; Straszyński, Juliusz

Efficient Computation of 2-Covers of a String

pdf-format:
LIPIcs-ESA-2020-77.pdf (0.6 MB)


Abstract

Quasiperiodicity is a generalization of periodicity that has been researched for almost 30 years. The notion of cover is the classic variant of quasiperiodicity. A cover of a text T is a string whose occurrences in T cover all positions of T. There are several algorithms computing covers of a text in linear time. In this paper we consider a natural extension of cover. For a text T, we call a pair of strings a 2-cover if they have the same length and their occurrences cover the text T. We give an algorithm that computes all 2-covers of a string of length n in ?(n log n log log n + output) expected time or ?(n log n log² log n / log log log n + output) worst-case time, where output is the size of output.
If (X,Y) is a 2-cover of T, then either X is a prefix and Y is a suffix of T, in which case we call (X,Y) a ps-cover, or one of X, Y is a border (that is, both a prefix and a suffix) of T, and then we call (X,Y) a b-cover. A string of length n has up to n ps-covers; we show an algorithm that computes all of them in ?(n log log n) expected time or ?(n log² log n / log log log n) worst-case time. A string of length n can have Θ(n²) non-trivial b-covers; our algorithm can report one b-cover per length (if it exists) or all shortest b-covers in ?(n log n log log n) expected time or ?(n log n log² log n / log log log n) worst-case time. All our algorithms use linear space.
The problem in scope can be generalized to λ > 2 equal-length strings, resulting in the notion of λ-cover. Cole et al. (2005) showed that the λ-cover problem is NP-complete. Our algorithms generalize to λ-covers, with (the first component of) the algorithm’s complexity multiplied by n^{λ-2}.

BibTeX - Entry

@InProceedings{radoszewski_et_al:LIPIcs:2020:12943,
  author =	{Jakub Radoszewski and Juliusz Straszyński},
  title =	{{Efficient Computation of 2-Covers of a String}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{77:1--77:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Fabrizio Grandoni and Grzegorz Herman and Peter Sanders},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12943},
  URN =		{urn:nbn:de:0030-drops-129432},
  doi =		{10.4230/LIPIcs.ESA.2020.77},
  annote =	{Keywords: quasiperiodicity, cover of a string, 2-cover, lambda-cover}
}

Keywords: quasiperiodicity, cover of a string, 2-cover, lambda-cover
Collection: 28th Annual European Symposium on Algorithms (ESA 2020)
Issue Date: 2020
Date of publication: 26.08.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI