License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2020.10
URN: urn:nbn:de:0030-drops-132515
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/13251/
Banerjee, Niranka ;
Raman, Venkatesh ;
Saurabh, Saket
Optimal Output Sensitive Fault Tolerant Cuts
Abstract
In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive integer f, our objective is to compute an upper bound on the size of the sparsest subgraph H of G that preserves edge connectivity of G (denoted by λ(G)) in the case of Global Min-Cut, and λ(G,k) (denotes the minimum number of edges whose removal would partition the graph into at least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The subgraph H corresponding to Global Min-Cut and Min k-Cut is called f-FTCS and f-FT-k-CS, respectively. We obtain the following results about the sizes of f-FTCS and f-FT-k-CS.
- There exists an f-FTCS with (n-1)(f+λ(G)) edges. We complement this upper bound with a matching lower bound, by constructing an infinite family of graphs where any f-FTCS must have at least ((n-λ(G)-1)(λ(G)+f-1))/2+(n-λ(G)-1)+/λ(G)(λ(G)+1))/2 edges.
- There exists an f-FT-k-CS with min{(2f+λ(G,k)-(k-1))(n-1), (f+λ(G,k))(n-k)+?} edges. We complement this upper bound with a lower bound, by constructing an infinite family of graphs where any f-FT-k-CS must have at least ((n-λ(G,k)-1)(λ(G,k)+f-k+1))/2)+n-λ(G,k)+k-3+((λ(G,k)-k+3)(λ(G,k)-k+2))/2 edges. Our upper bounds exploit the structural properties of k-connectivity certificates. On the other hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in the family any f-FTCS (or f-FT-k-CS) must contain all its edges. We also add that our upper bounds are constructive. That is, there exist polynomial time algorithms that construct H with the aforementioned number of edges.
BibTeX - Entry
@InProceedings{banerjee_et_al:LIPIcs:2020:13251,
author = {Niranka Banerjee and Venkatesh Raman and Saket Saurabh},
title = {{Optimal Output Sensitive Fault Tolerant Cuts}},
booktitle = {40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
pages = {10:1--10:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-174-0},
ISSN = {1868-8969},
year = {2020},
volume = {182},
editor = {Nitin Saxena and Sunil Simon},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2020/13251},
URN = {urn:nbn:de:0030-drops-132515},
doi = {10.4230/LIPIcs.FSTTCS.2020.10},
annote = {Keywords: Fault tolerant, minimum cuts, upper bound, lower bound}
}
Keywords: |
|
Fault tolerant, minimum cuts, upper bound, lower bound |
Collection: |
|
40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020) |
Issue Date: |
|
2020 |
Date of publication: |
|
04.12.2020 |