License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2020.19
URN: urn:nbn:de:0030-drops-132609
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/13260/
Go to the corresponding LIPIcs Volume Portal


Cook, Joshua

Size Bounds on Low Depth Circuits for Promise Majority

pdf-format:
LIPIcs-FSTTCS-2020-19.pdf (0.5 MB)


Abstract

We give two results on the size of AC0 circuits computing promise majority. ε-promise majority is majority promised that either at most an ε fraction of the input bits are 1 or at most ε are 0.
- First, we show super-quadratic size lower bounds on both monotone and general depth-3 circuits for promise majority.
- For any ε ∈ (0, 1/2), monotone depth-3 AC0 circuits for ε-promise majority have size Ω̃(ε³ n^{2 + (ln(1 - ε))/(ln(ε))}).
- For any ε ∈ (0, 1/2), general depth-3 AC0 circuits for ε-promise majority have size Ω̃(ε³ n^{2 + (ln(1 - ε²))/(2ln(ε))}). These are the first quadratic size lower bounds for depth-3 ε-promise majority circuits for ε < 0.49.
- Second, we give both uniform and non-uniform sub-quadratic size constant-depth circuits for promise majority.
- For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone non uniform AC0 circuits of depth-(2 + 2 k) computing ε-promise majority with size Õ(n^{1/(1 - 2^{-k})}).
- For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone uniform AC0 circuit of depth-(2 + 2 k) computing ε-promise majority with size n^{1/(1 - (2/3) ^k) + o(1)}. These circuits are based on incremental improvements to existing depth-3 circuits for promise majority given by Ajtai [Miklós Ajtai, 1983] and Viola [Emanuele Viola, 2009] combined with a divide and conquer strategy.

BibTeX - Entry

@InProceedings{cook:LIPIcs:2020:13260,
  author =	{Joshua Cook},
  title =	{{Size Bounds on Low Depth Circuits for Promise Majority}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Nitin Saxena and Sunil Simon},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/13260},
  URN =		{urn:nbn:de:0030-drops-132609},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.19},
  annote =	{Keywords: AC0, Approximate Counting, Approximate Majority, Promise Majority, Depth 3 Circuits, Circuit Lower Bound}
}

Keywords: AC0, Approximate Counting, Approximate Majority, Promise Majority, Depth 3 Circuits, Circuit Lower Bound
Collection: 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)
Issue Date: 2020
Date of publication: 04.12.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI