License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2020.54
URN: urn:nbn:de:0030-drops-133988
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/13398/
Uchizawa, Kei
Size, Depth and Energy of Threshold Circuits Computing Parity Function
Abstract
We investigate relations among the size, depth and energy of threshold circuits computing the n-variable parity function PAR_n, where the energy is a complexity measure for sparsity on computation of threshold circuits, and is defined to be the maximum number of gates outputting "1" over all the input assignments. We show that PAR_n is hard for threshold circuits of small size, depth and energy:
- If a depth-2 threshold circuit C of size s and energy e computes PAR_n, it holds that 2^{n/(elog ^e n)} ≤ s; and
- if a threshold circuit C of size s, depth d and energy e computes PAR_n, it holds that 2^{n/(e2^{e+d}log ^e n)} ≤ s. We then provide several upper bounds:
- PAR_n is computable by a depth-2 threshold circuit of size O(2^{n-2e}) and energy e;
- PAR_n is computable by a depth-3 threshold circuit of size O(2^{n/(e-1)} + 2^{e-2}) and energy e; and
- PAR_n is computable by a threshold circuit of size O((e+d)2^{n-m}), depth d + O(1) and energy e + O(1), where m = max (((e-1)/(d-1))^{d-1}, ((d-1)/(e-1))^{e-1}). Our lower and upper bounds imply that threshold circuits need exponential size if both depth and energy are constant, which contrasts with the fact that PAR_n is computable by a threshold circuit of size O(n) and depth 2 if there is no restriction on the energy. Our results also suggest that any threshold circuit computing the parity function needs depth to be sparse if its size is bounded.
BibTeX - Entry
@InProceedings{uchizawa:LIPIcs:2020:13398,
author = {Kei Uchizawa},
title = {{Size, Depth and Energy of Threshold Circuits Computing Parity Function}},
booktitle = {31st International Symposium on Algorithms and Computation (ISAAC 2020)},
pages = {54:1--54:13},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-173-3},
ISSN = {1868-8969},
year = {2020},
volume = {181},
editor = {Yixin Cao and Siu-Wing Cheng and Minming Li},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2020/13398},
URN = {urn:nbn:de:0030-drops-133988},
doi = {10.4230/LIPIcs.ISAAC.2020.54},
annote = {Keywords: Circuit complexity, neural networks, threshold circuits, sprase activity, tradeoffs}
}
Keywords: |
|
Circuit complexity, neural networks, threshold circuits, sprase activity, tradeoffs |
Collection: |
|
31st International Symposium on Algorithms and Computation (ISAAC 2020) |
Issue Date: |
|
2020 |
Date of publication: |
|
04.12.2020 |