License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2008.1347
URN: urn:nbn:de:0030-drops-13474
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2008/1347/
Colin de Verdiére, Éric ;
Schrijver, Alexander
Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs
Abstract
Let $G$ be a directed planar graph of complexity~$n$, each arc
having a nonnegative length. Let $s$ and~$t$ be two distinct faces
of~$G$; let $s_1,ldots,s_k$ be vertices incident with~$s$; let
$t_1,ldots,t_k$ be vertices incident with~$t$. We give an
algorithm to compute $k$ pairwise vertex-disjoint paths connecting
the pairs $(s_i,t_i)$ in~$G$, with minimal total length, in
$O(knlog n)$ time.
BibTeX - Entry
@InProceedings{colindeverdire_et_al:LIPIcs:2008:1347,
author = {{\'E}ric Colin de Verdi{\'e}re and Alexander Schrijver},
title = {{Shortest Vertex-Disjoint Two-Face Paths in Planar Graphs}},
booktitle = {25th International Symposium on Theoretical Aspects of Computer Science},
pages = {181--192},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-06-4},
ISSN = {1868-8969},
year = {2008},
volume = {1},
editor = {Susanne Albers and Pascal Weil},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2008/1347},
URN = {urn:nbn:de:0030-drops-13474},
doi = {10.4230/LIPIcs.STACS.2008.1347},
annote = {Keywords: Algorithm, planar graph, disjoint paths, shortest path}
}
Keywords: |
|
Algorithm, planar graph, disjoint paths, shortest path |
Collection: |
|
25th International Symposium on Theoretical Aspects of Computer Science |
Issue Date: |
|
2008 |
Date of publication: |
|
06.02.2008 |