License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2021.10
URN: urn:nbn:de:0030-drops-135491
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13549/
Go to the corresponding LIPIcs Volume Portal


Manurangsi, Pasin ; Rubinstein, Aviad ; Schramm, Tselil

The Strongish Planted Clique Hypothesis and Its Consequences

pdf-format:
LIPIcs-ITCS-2021-10.pdf (0.6 MB)


Abstract

We formulate a new hardness assumption, the Strongish Planted Clique Hypothesis (SPCH), which postulates that any algorithm for planted clique must run in time n^Ω(log n) (so that the state-of-the-art running time of n^O(log n) is optimal up to a constant in the exponent).
We provide two sets of applications of the new hypothesis. First, we show that SPCH implies (nearly) tight inapproximability results for the following well-studied problems in terms of the parameter k: Densest k-Subgraph, Smallest k-Edge Subgraph, Densest k-Subhypergraph, Steiner k-Forest, and Directed Steiner Network with k terminal pairs. For example, we show, under SPCH, that no polynomial time algorithm achieves o(k)-approximation for Densest k-Subgraph. This inapproximability ratio improves upon the previous best k^o(1) factor from (Chalermsook et al., FOCS 2017). Furthermore, our lower bounds hold even against fixed-parameter tractable algorithms with parameter k.
Our second application focuses on the complexity of graph pattern detection. For both induced and non-induced graph pattern detection, we prove hardness results under SPCH, improving the running time lower bounds obtained by (Dalirrooyfard et al., STOC 2019) under the Exponential Time Hypothesis.

BibTeX - Entry

@InProceedings{manurangsi_et_al:LIPIcs.ITCS.2021.10,
  author =	{Pasin Manurangsi and Aviad Rubinstein and Tselil Schramm},
  title =	{{The Strongish Planted Clique Hypothesis and Its Consequences}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{James R. Lee},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13549},
  URN =		{urn:nbn:de:0030-drops-135491},
  doi =		{10.4230/LIPIcs.ITCS.2021.10},
  annote =	{Keywords: Planted Clique, Densest k-Subgraph, Hardness of Approximation}
}

Keywords: Planted Clique, Densest k-Subgraph, Hardness of Approximation
Collection: 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)
Issue Date: 2021
Date of publication: 04.02.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI