License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2021.19
URN: urn:nbn:de:0030-drops-135581
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13558/
Go to the corresponding LIPIcs Volume Portal


Metger, Tony ; Vidick, Thomas

Self-Testing of a Single Quantum Device Under Computational Assumptions

pdf-format:
LIPIcs-ITCS-2021-19.pdf (0.5 MB)


Abstract

Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-output correlations, and plays an important role in device-independent quantum information processing as well as quantum complexity theory. Prior works on self-testing require the assumption that the system’s state is shared among multiple parties that only perform local measurements and cannot communicate. Here, we replace the setting of multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally bounded party. Specifically, we construct a protocol that allows a classical verifier to robustly certify that a single computationally bounded quantum device must have prepared a Bell pair and performed single-qubit measurements on it, up to a change of basis applied to both the device’s state and measurements. This means that under computational assumptions, the verifier is able to certify the presence of entanglement, a property usually closely associated with two separated subsystems, inside a single quantum device. To achieve this, we build on techniques first introduced by Brakerski et al. (2018) and Mahadev (2018) which allow a classical verifier to constrain the actions of a quantum device assuming the device does not break post-quantum cryptography.

BibTeX - Entry

@InProceedings{metger_et_al:LIPIcs.ITCS.2021.19,
  author =	{Tony Metger and Thomas Vidick},
  title =	{{Self-Testing of a Single Quantum Device Under Computational Assumptions}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{19:1--19:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{James R. Lee},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13558},
  URN =		{urn:nbn:de:0030-drops-135581},
  doi =		{10.4230/LIPIcs.ITCS.2021.19},
  annote =	{Keywords: Quantum computing, quantum cryptography, device-independence, self-testing, post-quantum cryptography}
}

Keywords: Quantum computing, quantum cryptography, device-independence, self-testing, post-quantum cryptography
Collection: 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)
Issue Date: 2021
Date of publication: 04.02.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI