License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2021.23
URN: urn:nbn:de:0030-drops-135629
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13562/
Go to the corresponding LIPIcs Volume Portal


Dutta, Pranjal ; Saxena, Nitin ; Thierauf, Thomas

A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization

pdf-format:
LIPIcs-ITCS-2021-23.pdf (0.6 MB)


Abstract

For a polynomial f, we study the sum of squares representation (SOS), i.e. f = ∑_{i ∈ [s]} c_i f_i² , where c_i are field elements and the f_i’s are polynomials. The size of the representation is the number of monomials that appear across the f_i’s. Its minimum is the support-sum S(f) of f.
For simplicity of exposition, we consider univariate f. A trivial lower bound for the support-sum of, a full-support univariate polynomial, f of degree d is S(f) ≥ d^{0.5}. We show that the existence of an explicit polynomial f with support-sum just slightly larger than the trivial bound, that is, S(f) ≥ d^{0.5+ε(d)}, for a sub-constant function ε(d) > ω(√{log log d/log d}), implies that VP ≠ VNP. The latter is a major open problem in algebraic complexity. A further consequence is that blackbox-PIT is in SUBEXP. Note that a random polynomial fulfills the condition, as there we have S(f) = Θ(d).
We also consider the sum-of-cubes representation (SOC) of polynomials. In a similar way, we show that here, an explicit hard polynomial even implies that blackbox-PIT is in P.

BibTeX - Entry

@InProceedings{dutta_et_al:LIPIcs.ITCS.2021.23,
  author =	{Pranjal Dutta and Nitin Saxena and Thomas Thierauf},
  title =	{{A Largish Sum-Of-Squares Implies Circuit Hardness and Derandomization}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{23:1--23:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{James R. Lee},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13562},
  URN =		{urn:nbn:de:0030-drops-135629},
  doi =		{10.4230/LIPIcs.ITCS.2021.23},
  annote =	{Keywords: VP, VNP, hitting set, circuit, polynomial, sparsity, SOS, SOC, PIT, lower bound}
}

Keywords: VP, VNP, hitting set, circuit, polynomial, sparsity, SOS, SOC, PIT, lower bound
Collection: 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)
Issue Date: 2021
Date of publication: 04.02.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI