License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2021.28
URN: urn:nbn:de:0030-drops-136735
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13673/
Go to the corresponding LIPIcs Volume Portal


Exibard, Léo ; Filiot, Emmanuel ; Khalimov, Ayrat

Church Synthesis on Register Automata over Linearly Ordered Data Domains

pdf-format:
LIPIcs-STACS-2021-28.pdf (0.7 MB)


Abstract

Register automata are finite automata equipped with a finite set of registers in which they can store data, i.e. elements from an unbounded or infinite alphabet. They provide a simple formalism to specify the behaviour of reactive systems operating over data ω-words. We study the synthesis problem for specifications given as register automata over a linearly ordered data domain (e.g. (ℕ, ≤) or (ℚ, ≤)), which allow for comparison of data with regards to the linear order. To that end, we extend the classical Church synthesis game to infinite alphabets: two players, Adam and Eve, alternately play some data, and Eve wins whenever their interaction complies with the specification, which is a language of ω-words over ordered data. Such games are however undecidable, even when the specification is recognised by a deterministic register automaton. This is in contrast with the equality case, where the problem is only undecidable for nondeterministic and universal specifications.
Thus, we study one-sided Church games, where Eve instead operates over a finite alphabet, while Adam still manipulates data. We show they are determined, and deciding the existence of a winning strategy is in ExpTime, both for ℚ and ℕ. This follows from a study of constraint sequences, which abstract the behaviour of register automata, and allow us to reduce Church games to ω-regular games. Lastly, we apply these results to the transducer synthesis problem for input-driven register automata, where each output data is restricted to be the content of some register, and show that if there exists an implementation, then there exists one which is a register transducer.

BibTeX - Entry

@InProceedings{exibard_et_al:LIPIcs.STACS.2021.28,
  author =	{Exibard, L\'{e}o and Filiot, Emmanuel and Khalimov, Ayrat},
  title =	{{Church Synthesis on Register Automata over Linearly Ordered Data Domains}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13673},
  URN =		{urn:nbn:de:0030-drops-136735},
  doi =		{10.4230/LIPIcs.STACS.2021.28},
  annote =	{Keywords: Synthesis, Church Game, Register Automata, Transducers, Ordered Data Words}
}

Keywords: Synthesis, Church Game, Register Automata, Transducers, Ordered Data Words
Collection: 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)
Issue Date: 2021
Date of publication: 10.03.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI