License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/OASIcs.iPMVM.2020.12
URN: urn:nbn:de:0030-drops-137614
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13761/
Go to the corresponding OASIcs Volume Portal


Vardanyan, Vardan Hoviki ; Urbassek, Herbert M.

Modeling of Nanoindentation in Ni-Graphene Nanocomposites: A Molecular Dynamics Sensitivity Study

pdf-format:
OASIcs-iPMVM-2020-12.pdf (3 MB)


Abstract

Using molecular dynamics simulation, we perform nanoindentation simulations on a Ni-graphene model system, in which a graphene flake coats the grain boundary of a Ni bi-crystal. Material strengthening or weakening by inclusion of graphene is discussed with the help of the force needed to indent to a specified depth. By varying the depth of the graphene flake with respect to the indentation depth we identify the distance up to which graphene influences the indentation behavior. In addition, we vary the details of the modeling of the graphene flake in the matrix metal and determine their influence on the performance of the nanocomposite. Our results indicate that the modeling results are robust against variations in the modeling of the graphene flake.

BibTeX - Entry

@InProceedings{vardanyan_et_al:OASIcs.iPMVM.2020.12,
  author =	{Vardanyan, Vardan Hoviki and Urbassek, Herbert M.},
  title =	{{Modeling of Nanoindentation in Ni-Graphene Nanocomposites: A Molecular Dynamics Sensitivity Study}},
  booktitle =	{2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020)},
  pages =	{12:1--12:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-183-2},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{89},
  editor =	{Garth, Christoph and Aurich, Jan C. and Linke, Barbara and M\"{u}ller, Ralf and Ravani, Bahram and Weber, Gunther H. and Kirsch, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13761},
  URN =		{urn:nbn:de:0030-drops-137614},
  doi =		{10.4230/OASIcs.iPMVM.2020.12},
  annote =	{Keywords: molecular dynamics, nickel-graphene composites, dislocations, nanoindentation}
}

Keywords: molecular dynamics, nickel-graphene composites, dislocations, nanoindentation
Collection: 2nd International Conference of the DFG International Research Training Group 2057 – Physical Modeling for Virtual Manufacturing (iPMVM 2020)
Issue Date: 2021
Date of publication: 27.04.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI