Abstract
We resolve the longstanding open problem concerning the computational complexity of Max Cut on interval graphs by showing that it is NP-complete.
BibTeX - Entry
@InProceedings{adhikary_et_al:LIPIcs.SoCG.2021.7,
author = {Adhikary, Ranendu and Bose, Kaustav and Mukherjee, Satwik and Roy, Bodhayan},
title = {{Complexity of Maximum Cut on Interval Graphs}},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
pages = {7:1--7:11},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-184-9},
ISSN = {1868-8969},
year = {2021},
volume = {189},
editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/13806},
URN = {urn:nbn:de:0030-drops-138067},
doi = {10.4230/LIPIcs.SoCG.2021.7},
annote = {Keywords: Maximum cut, Interval graph, NP-complete}
}
Keywords: |
|
Maximum cut, Interval graph, NP-complete |
Collection: |
|
37th International Symposium on Computational Geometry (SoCG 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
02.06.2021 |