License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2021.7
URN: urn:nbn:de:0030-drops-138067
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13806/
Go to the corresponding LIPIcs Volume Portal


Adhikary, Ranendu ; Bose, Kaustav ; Mukherjee, Satwik ; Roy, Bodhayan

Complexity of Maximum Cut on Interval Graphs

pdf-format:
LIPIcs-SoCG-2021-7.pdf (0.7 MB)


Abstract

We resolve the longstanding open problem concerning the computational complexity of Max Cut on interval graphs by showing that it is NP-complete.

BibTeX - Entry

@InProceedings{adhikary_et_al:LIPIcs.SoCG.2021.7,
  author =	{Adhikary, Ranendu and Bose, Kaustav and Mukherjee, Satwik and Roy, Bodhayan},
  title =	{{Complexity of Maximum Cut on Interval Graphs}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{7:1--7:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13806},
  URN =		{urn:nbn:de:0030-drops-138067},
  doi =		{10.4230/LIPIcs.SoCG.2021.7},
  annote =	{Keywords: Maximum cut, Interval graph, NP-complete}
}

Keywords: Maximum cut, Interval graph, NP-complete
Collection: 37th International Symposium on Computational Geometry (SoCG 2021)
Issue Date: 2021
Date of publication: 02.06.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI