License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2021.16
URN: urn:nbn:de:0030-drops-138152
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13815/
Biswas, Ranita ;
Cultrera di Montesano, Sebastiano ;
Edelsbrunner, Herbert ;
Saghafian, Morteza
Counting Cells of Order-k Voronoi Tessellations in ℝ³ with Morse Theory
Abstract
Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation.
BibTeX - Entry
@InProceedings{biswas_et_al:LIPIcs.SoCG.2021.16,
author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza},
title = {{Counting Cells of Order-k Voronoi Tessellations in \mathbb{R}³ with Morse Theory}},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
pages = {16:1--16:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-184-9},
ISSN = {1868-8969},
year = {2021},
volume = {189},
editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/13815},
URN = {urn:nbn:de:0030-drops-138152},
doi = {10.4230/LIPIcs.SoCG.2021.16},
annote = {Keywords: Voronoi tessellations, Delaunay mosaics, arrangements, convex polytopes, Morse theory, counting}
}
Keywords: |
|
Voronoi tessellations, Delaunay mosaics, arrangements, convex polytopes, Morse theory, counting |
Collection: |
|
37th International Symposium on Computational Geometry (SoCG 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
02.06.2021 |