License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2021.38
URN: urn:nbn:de:0030-drops-138378
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13837/
Fulek, Radoslav ;
Pelsmajer, Michael J. ;
Schaefer, Marcus
Strong Hanani-Tutte for the Torus
Abstract
If a graph can be drawn on the torus so that every two independent edges cross an even number of times, then the graph can be embedded on the torus.
BibTeX - Entry
@InProceedings{fulek_et_al:LIPIcs.SoCG.2021.38,
author = {Fulek, Radoslav and Pelsmajer, Michael J. and Schaefer, Marcus},
title = {{Strong Hanani-Tutte for the Torus}},
booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)},
pages = {38:1--38:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-184-9},
ISSN = {1868-8969},
year = {2021},
volume = {189},
editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/13837},
URN = {urn:nbn:de:0030-drops-138378},
doi = {10.4230/LIPIcs.SoCG.2021.38},
annote = {Keywords: Graph Embedding, Torus, Hanani-Tutte Theorem, Intersection Form}
}
Keywords: |
|
Graph Embedding, Torus, Hanani-Tutte Theorem, Intersection Form |
Collection: |
|
37th International Symposium on Computational Geometry (SoCG 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
02.06.2021 |