License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2021.54
URN: urn:nbn:de:0030-drops-138534
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13853/
Go to the corresponding LIPIcs Volume Portal


Merino, Arturo ; Mütze, Torsten

Efficient Generation of Rectangulations via Permutation Languages

pdf-format:
LIPIcs-SoCG-2021-54.pdf (1 MB)


Abstract

A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework.

BibTeX - Entry

@InProceedings{merino_et_al:LIPIcs.SoCG.2021.54,
  author =	{Merino, Arturo and M\"{u}tze, Torsten},
  title =	{{Efficient Generation of Rectangulations via Permutation Languages}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{54:1--54:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13853},
  URN =		{urn:nbn:de:0030-drops-138534},
  doi =		{10.4230/LIPIcs.SoCG.2021.54},
  annote =	{Keywords: Exhaustive generation, Gray code, flip graph, polytope, generic rectangulation, diagonal rectangulation, cartogram, floorplan, permutation pattern}
}

Keywords: Exhaustive generation, Gray code, flip graph, polytope, generic rectangulation, diagonal rectangulation, cartogram, floorplan, permutation pattern
Collection: 37th International Symposium on Computational Geometry (SoCG 2021)
Issue Date: 2021
Date of publication: 02.06.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI