License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CPM.2021.7
URN: urn:nbn:de:0030-drops-139588
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13958/
Go to the corresponding LIPIcs Volume Portal


Bannai, Hideo ; Kärkkäinen, Juha ; Köppl, Dominik ; Piątkowski, Marcin

Constructing the Bijective and the Extended Burrows-Wheeler Transform in Linear Time

pdf-format:
LIPIcs-CPM-2021-7.pdf (0.8 MB)


Abstract

The Burrows-Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it is known that the BWT can be constructed in linear time for integer alphabets by using a linear time suffix array construction algorithm, it was up to now only conjectured that the BBWT can also be constructed in linear time. We confirm this conjecture in the word RAM model by proposing a construction algorithm that is based on SAIS, improving the best known result of O(n lg n / lg lg n) time to linear. Since we can reduce the problem of constructing the extended BWT to constructing the BBWT in linear time, we obtain a linear-time algorithm computing the extended BWT at the same time.

BibTeX - Entry

@InProceedings{bannai_et_al:LIPIcs.CPM.2021.7,
  author =	{Bannai, Hideo and K\"{a}rkk\"{a}inen, Juha and K\"{o}ppl, Dominik and Pi\k{a}tkowski, Marcin},
  title =	{{Constructing the Bijective and the Extended Burrows-Wheeler Transform in Linear Time}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13958},
  URN =		{urn:nbn:de:0030-drops-139588},
  doi =		{10.4230/LIPIcs.CPM.2021.7},
  annote =	{Keywords: Burrows-Wheeler Transform, Lyndon words, Circular Suffix Array, Suffix Array Construction Algorithm}
}

Keywords: Burrows-Wheeler Transform, Lyndon words, Circular Suffix Array, Suffix Array Construction Algorithm
Collection: 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)
Issue Date: 2021
Date of publication: 30.06.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI