License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/OASIcs.AUTOMATA.2021.9
URN: urn:nbn:de:0030-drops-140182
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14018/
Lutfalla, Victor H.
An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry
Abstract
We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold rotational symmetry for any n. This construction is based on the dualization of regular n-fold multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on trigonometric diophantine equations. A SageMath program that computes these tilings and outputs svg files is publicly available in [Lutfalla, 2021].
BibTeX - Entry
@InProceedings{lutfalla:OASIcs.AUTOMATA.2021.9,
author = {Lutfalla, Victor H.},
title = {{An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry}},
booktitle = {27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021)},
pages = {9:1--9:12},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-189-4},
ISSN = {2190-6807},
year = {2021},
volume = {90},
editor = {Castillo-Ramirez, Alonso and Guillon, Pierre and Perrot, K\'{e}vin},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/14018},
URN = {urn:nbn:de:0030-drops-140182},
doi = {10.4230/OASIcs.AUTOMATA.2021.9},
annote = {Keywords: Cut-and-project tiling, Rhombus tiling, Aperiodic order, Rotational symmetry, De Bruijn multigrid, Trigonometric diophantine equations}
}
Keywords: |
|
Cut-and-project tiling, Rhombus tiling, Aperiodic order, Rotational symmetry, De Bruijn multigrid, Trigonometric diophantine equations |
Collection: |
|
27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
28.06.2021 |
Supplementary Material: |
|
n-fold multigrid dual tilings [Lutfalla, 2021] Software: https://doi.org/10.5281/zenodo.4698387 |