License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.35
URN: urn:nbn:de:0030-drops-141044
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14104/
Bonnet, Édouard ;
Geniet, Colin ;
Kim, Eun Jung ;
Thomassé, Stéphan ;
Watrigant, Rémi
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring
Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order model checking can be solved in time f(d,k)n for n-vertex graphs given with a witness that the twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet et al., FOCS '20]. The inevitable price to pay for such a general result is that f is a tower of exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need not be impractical. We present 2^{O(k)}n-time algorithms for k-Independent Set, r-Scattered Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in the slightly worse running time 2^{O(k log k)}n. Up to logarithmic factors in the exponent, all these running times are optimal, unless the Exponential Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a dynamic programming scheme following the sequence of contractions forward.
We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-width classes, and does so with a very concise proof. It readily yields a constant approximation for Max Independent Set on K_t-free graphs of bounded twin-width, and a 2^{O(OPT)}-approximation for Min Coloring on bounded twin-width graphs. We further observe that a constant approximation for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number) would actually imply a PTAS.
The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in time O(n log n) and time O(n² log n), respectively. In sharp contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width graphs, unless the Strong Exponential Time Hypothesis fails.
The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions [Bonnet et al., SODA '21], a branching and more robust witness of low twin-width. We present constant-approximation algorithms for Min Dominating Set and related problems, on bounded twin-width graphs, by showing that the integrality gap is constant. This is done by going down the versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a greedy approach yields the desired approximation.
BibTeX - Entry
@InProceedings{bonnet_et_al:LIPIcs.ICALP.2021.35,
author = {Bonnet, \'{E}douard and Geniet, Colin and Kim, Eun Jung and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
title = {{Twin-width III: Max Independent Set, Min Dominating Set, and Coloring}},
booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
pages = {35:1--35:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-195-5},
ISSN = {1868-8969},
year = {2021},
volume = {198},
editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/14104},
URN = {urn:nbn:de:0030-drops-141044},
doi = {10.4230/LIPIcs.ICALP.2021.35},
annote = {Keywords: Twin-width, Max Independent Set, Min Dominating Set, Coloring, Parameterized Algorithms, Approximation Algorithms, Exact Algorithms}
}
Keywords: |
|
Twin-width, Max Independent Set, Min Dominating Set, Coloring, Parameterized Algorithms, Approximation Algorithms, Exact Algorithms |
Collection: |
|
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
02.07.2021 |