License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.81
URN: urn:nbn:de:0030-drops-141504
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14150/
Go to the corresponding LIPIcs Volume Portal


Ibrahimpur, Sharat ; Swamy, Chaitanya

Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

pdf-format:
LIPIcs-ICALP-2021-81.pdf (0.9 MB)


Abstract

We consider the minimum-norm load-balancing (MinNormLB) problem, wherein there are n jobs, each of which needs to be assigned to one of m machines, and we are given the processing times {p_{ij}} of the jobs on the machines. We also have a monotone, symmetric norm f:ℝ^m → ℝ_{≥ 0}. We seek an assignment σ of jobs to machines that minimizes the f-norm of the induced load vector load->_σ ∈ ℝ_{≥ 0}^m, where load_σ(i) = ∑_{j:σ(j) = i}p_{ij}. This problem was introduced by [Deeparnab Chakrabarty and Chaitanya Swamy, 2019], and the current-best result for MinNormLB is a (4+ε)-approximation [Deeparnab Chakrabarty and Chaitanya Swamy, 2019]. In the stochastic version of MinNormLB, the job processing times are given by nonnegative random variables X_{ij}, and jobs are independent; the goal is to find an assignment σ that minimizes the expected f-norm of the induced random load vector.
We obtain results that (essentially) match the best-known guarantees for deterministic makespan minimization (MinNormLB with ?_∞ norm). For MinNormLB, we obtain a (2+ε)-approximation for unrelated machines, and a PTAS for identical machines. For stochastic MinNormLB, we consider the setting where the X_{ij}s are Poisson random variables, denoted PoisNormLB. Our main result here is a novel and powerful reduction showing that, for any machine environment (e.g., unrelated/identical machines), any α-approximation algorithm for MinNormLB in that machine environment yields a randomized α(1+ε)-approximation for PoisNormLB in that machine environment. Combining this with our results for MinNormLB, we immediately obtain a (2+ε)-approximation for PoisNormLB on unrelated machines, and a PTAS for PoisNormLB on identical machines. The latter result substantially generalizes a PTAS for makespan minimization with Poisson jobs obtained recently by [Anindya De et al., 2020].

BibTeX - Entry

@InProceedings{ibrahimpur_et_al:LIPIcs.ICALP.2021.81,
  author =	{Ibrahimpur, Sharat and Swamy, Chaitanya},
  title =	{{Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{81:1--81:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14150},
  URN =		{urn:nbn:de:0030-drops-141504},
  doi =		{10.4230/LIPIcs.ICALP.2021.81},
  annote =	{Keywords: Approximation algorithms, Load balancing, Minimum-norm optimization, LP rounding}
}

Keywords: Approximation algorithms, Load balancing, Minimum-norm optimization, LP rounding
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI