License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.103
URN: urn:nbn:de:0030-drops-141720
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14172/
Go to the corresponding LIPIcs Volume Portal


Peserico, Enoch ; Scquizzato, Michele

Matching on the Line Admits No o(√log n)-Competitive Algorithm

pdf-format:
LIPIcs-ICALP-2021-103.pdf (0.5 MB)


Abstract

We present a simple proof that the competitive ratio of any randomized online matching algorithm for the line exceeds √{log₂(n +1)}/15 for all n = 2ⁱ-1: i ∈ ℕ, settling a 25-year-old open question.

BibTeX - Entry

@InProceedings{peserico_et_al:LIPIcs.ICALP.2021.103,
  author =	{Peserico, Enoch and Scquizzato, Michele},
  title =	{{Matching on the Line Admits No o(√log n)-Competitive Algorithm}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{103:1--103:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14172},
  URN =		{urn:nbn:de:0030-drops-141720},
  doi =		{10.4230/LIPIcs.ICALP.2021.103},
  annote =	{Keywords: Metric matching, online algorithms, competitive analysis}
}

Keywords: Metric matching, online algorithms, competitive analysis
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI