License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSCD.2021.20
URN: urn:nbn:de:0030-drops-142581
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14258/
Go to the corresponding LIPIcs Volume Portal


Blanqui, Frédéric ; Dowek, Gilles ; Grienenberger, Émilie ; Hondet, Gabriel ; Thiré, François

Some Axioms for Mathematics

pdf-format:
LIPIcs-FSCD-2021-20.pdf (0.8 MB)


Abstract

The λΠ-calculus modulo theory is a logical framework in which many logical systems can be expressed as theories. We present such a theory, the theory {U}, where proofs of several logical systems can be expressed. Moreover, we identify a sub-theory of {U} corresponding to each of these systems, and prove that, when a proof in {U} uses only symbols of a sub-theory, then it is a proof in that sub-theory.

BibTeX - Entry

@InProceedings{blanqui_et_al:LIPIcs.FSCD.2021.20,
  author =	{Blanqui, Fr\'{e}d\'{e}ric and Dowek, Gilles and Grienenberger, \'{E}milie and Hondet, Gabriel and Thir\'{e}, Fran\c{c}ois},
  title =	{{Some Axioms for Mathematics}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14258},
  URN =		{urn:nbn:de:0030-drops-142581},
  doi =		{10.4230/LIPIcs.FSCD.2021.20},
  annote =	{Keywords: logical framework, axiomatic theory, dependent types, rewriting, interoperabilty}
}

Keywords: logical framework, axiomatic theory, dependent types, rewriting, interoperabilty
Collection: 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)
Issue Date: 2021
Date of publication: 06.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI