License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2021.31
URN: urn:nbn:de:0030-drops-143055
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14305/
Go to the corresponding LIPIcs Volume Portal


Hirahara, Shuichi ; Ilango, Rahul ; Loff, Bruno

Hardness of Constant-Round Communication Complexity

pdf-format:
LIPIcs-CCC-2021-31.pdf (0.9 MB)


Abstract

How difficult is it to compute the communication complexity of a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix? In 2009, Kushilevitz and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is NP-hard.
In this work, we show that it is NP-hard to approximate the size (number of leaves) of the smallest constant-round protocol for a two-argument total Boolean function f:[N]×[N] → {0,1}, when it is given as an N×N binary matrix. Along the way to proving this, we show a new deterministic variant of the round elimination lemma, which may be of independent interest.

BibTeX - Entry

@InProceedings{hirahara_et_al:LIPIcs.CCC.2021.31,
  author =	{Hirahara, Shuichi and Ilango, Rahul and Loff, Bruno},
  title =	{{Hardness of Constant-Round Communication Complexity}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{31:1--31:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14305},
  URN =		{urn:nbn:de:0030-drops-143055},
  doi =		{10.4230/LIPIcs.CCC.2021.31},
  annote =	{Keywords: NP-completeness, Communication Complexity, Round Elimination Lemma, Meta-Complexity}
}

Keywords: NP-completeness, Communication Complexity, Round Elimination Lemma, Meta-Complexity
Collection: 36th Computational Complexity Conference (CCC 2021)
Issue Date: 2021
Date of publication: 08.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI