License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2021.76
URN: urn:nbn:de:0030-drops-145161
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14516/
Go to the corresponding LIPIcs Volume Portal


Molter, Hendrik ; Renken, Malte ; Zschoche, Philipp

Temporal Reachability Minimization: Delaying vs. Deleting

pdf-format:
LIPIcs-MFCS-2021-76.pdf (0.8 MB)


Abstract

We study spreading processes in temporal graphs, i. e., graphs whose connections change over time. These processes naturally model real-world phenomena such as infectious diseases or information flows. More precisely, we investigate how such a spreading process, emerging from a given set of sources, can be contained to a small part of the graph. To this end we consider two ways of modifying the graph, which are (1) deleting connections and (2) delaying connections. We show a close relationship between the two associated problems and give a polynomial time algorithm when the graph has tree structure. For the general version, we consider parameterization by the number of vertices to which the spread is contained. Surprisingly, we prove W[1]-hardness for the deletion variant but fixed-parameter tractability for the delaying variant.

BibTeX - Entry

@InProceedings{molter_et_al:LIPIcs.MFCS.2021.76,
  author =	{Molter, Hendrik and Renken, Malte and Zschoche, Philipp},
  title =	{{Temporal Reachability Minimization: Delaying vs. Deleting}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{76:1--76:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14516},
  URN =		{urn:nbn:de:0030-drops-145161},
  doi =		{10.4230/LIPIcs.MFCS.2021.76},
  annote =	{Keywords: Temporal Graphs, Temporal Paths, Disease Spreading, Network Flows, Parameterized Algorithms, NP-hard Problems}
}

Keywords: Temporal Graphs, Temporal Paths, Disease Spreading, Network Flows, Parameterized Algorithms, NP-hard Problems
Collection: 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
Issue Date: 2021
Date of publication: 18.08.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI