License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2021.22
URN: urn:nbn:de:0030-drops-146038
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14603/
Braun, Alexander ;
Buttkus, Matthias ;
Kesselheim, Thomas
Asymptotically Optimal Welfare of Posted Pricing for Multiple Items with MHR Distributions
Abstract
We consider the problem of posting prices for unit-demand buyers if all n buyers have identically distributed valuations drawn from a distribution with monotone hazard rate. We show that even with multiple items asymptotically optimal welfare can be guaranteed.
Our main results apply to the case that either a buyer’s value for different items are independent or that they are perfectly correlated. We give mechanisms using dynamic prices that obtain a 1 - Θ (1/(log n))-fraction of the optimal social welfare in expectation. Furthermore, we devise mechanisms that only use static item prices and are 1 - Θ ((log log log n)/(log n))-competitive compared to the optimal social welfare. As we show, both guarantees are asymptotically optimal, even for a single item and exponential distributions.
BibTeX - Entry
@InProceedings{braun_et_al:LIPIcs.ESA.2021.22,
author = {Braun, Alexander and Buttkus, Matthias and Kesselheim, Thomas},
title = {{Asymptotically Optimal Welfare of Posted Pricing for Multiple Items with MHR Distributions}},
booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)},
pages = {22:1--22:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-204-4},
ISSN = {1868-8969},
year = {2021},
volume = {204},
editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/14603},
URN = {urn:nbn:de:0030-drops-146038},
doi = {10.4230/LIPIcs.ESA.2021.22},
annote = {Keywords: Prophet Inequalities, Monotone Hazard Rate, Competitive Analysis, Posted Prices, Combinatorial Auctions, Matching}
}
Keywords: |
|
Prophet Inequalities, Monotone Hazard Rate, Competitive Analysis, Posted Prices, Combinatorial Auctions, Matching |
Collection: |
|
29th Annual European Symposium on Algorithms (ESA 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
31.08.2021 |