License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2021.51
URN: urn:nbn:de:0030-drops-146323
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14632/
Go to the corresponding LIPIcs Volume Portal


Har-Peled, Sariel ; Zhou, Timothy

Improved Approximation Algorithms for Tverberg Partitions

pdf-format:
LIPIcs-ESA-2021-51.pdf (0.9 MB)


Abstract

Tverberg’s theorem states that a set of n points in ℝ^d can be partitioned into ⌈n/(d+1)⌉ sets whose convex hulls all intersect. A point in the intersection (aka Tverberg point) is a centerpoint, or high-dimensional median, of the input point set. While randomized algorithms exist to find centerpoints with some failure probability, a partition for a Tverberg point provides a certificate of its correctness.
Unfortunately, known algorithms for computing exact Tverberg points take n^{O(d²)} time. We provide several new approximation algorithms for this problem, which improve running time or approximation quality over previous work. In particular, we provide the first strongly polynomial (in both n and d) approximation algorithm for finding a Tverberg point.

BibTeX - Entry

@InProceedings{harpeled_et_al:LIPIcs.ESA.2021.51,
  author =	{Har-Peled, Sariel and Zhou, Timothy},
  title =	{{Improved Approximation Algorithms for Tverberg Partitions}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14632},
  URN =		{urn:nbn:de:0030-drops-146323},
  doi =		{10.4230/LIPIcs.ESA.2021.51},
  annote =	{Keywords: Geometric spanners, vertex failures, robustness}
}

Keywords: Geometric spanners, vertex failures, robustness
Collection: 29th Annual European Symposium on Algorithms (ESA 2021)
Issue Date: 2021
Date of publication: 31.08.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI