License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2021.62
URN: urn:nbn:de:0030-drops-146432
Go to the corresponding LIPIcs Volume Portal

Leichter, Marilena ; Moseley, Benjamin ; Pruhs, Kirk

An Efficient Reduction of a Gammoid to a Partition Matroid

LIPIcs-ESA-2021-62.pdf (0.8 MB)


Our main contribution is a polynomial-time algorithm to reduce a k-colorable gammoid to a (2k-2)-colorable partition matroid. It is known that there are gammoids that can not be reduced to any (2k-3)-colorable partition matroid, so this result is tight. We then discuss how such a reduction can be used to obtain polynomial-time algorithms with better approximation ratios for various natural problems related to coloring and list coloring the intersection of matroids.

BibTeX - Entry

  author =	{Leichter, Marilena and Moseley, Benjamin and Pruhs, Kirk},
  title =	{{An Efficient Reduction of a Gammoid to a Partition Matroid}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{62:1--62:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-146432},
  doi =		{10.4230/LIPIcs.ESA.2021.62},
  annote =	{Keywords: Matroid, Gammoid, Reduction, Algorithms}

Keywords: Matroid, Gammoid, Reduction, Algorithms
Collection: 29th Annual European Symposium on Algorithms (ESA 2021)
Issue Date: 2021
Date of publication: 31.08.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI