License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2021.70
URN: urn:nbn:de:0030-drops-146512
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14651/
Go to the corresponding LIPIcs Volume Portal


Munro, J. Ian ; Nicholson, Patrick K. ; Benkner, Louisa Seelbach ; Wild, Sebastian

Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima

pdf-format:
LIPIcs-ESA-2021-70.pdf (0.9 MB)


Abstract

We present a new universal source code for distributions of unlabeled binary and ordinal trees that achieves optimal compression to within lower order terms for all tree sources covered by existing universal codes. At the same time, it supports answering many navigational queries on the compressed representation in constant time on the word-RAM; this is not known to be possible for any existing tree compression method. The resulting data structures, "hypersuccinct trees", hence combine the compression achieved by the best known universal codes with the operation support of the best succinct tree data structures.
We apply hypersuccinct trees to obtain a universal compressed data structure for range-minimum queries. It has constant query time and the optimal worst-case space usage of 2n+o(n) bits, but the space drops to 1.736n + o(n) bits on average for random permutations of n elements, and 2lg binom{n}{r} + o(n) for arrays with r increasing runs, respectively. Both results are optimal; the former answers an open problem of Davoodi et al. (2014) and Golin et al. (2016).
Compared to prior work on succinct data structures, we do not have to tailor our data structure to specific applications; hypersuccinct trees automatically adapt to the trees at hand. We show that they simultaneously achieve the optimal space usage to within lower order terms for a wide range of distributions over tree shapes, including: binary search trees (BSTs) generated by insertions in random order / Cartesian trees of random arrays, random fringe-balanced BSTs, binary trees with a given number of binary/unary/leaf nodes, random binary tries generated from memoryless sources, full binary trees, unary paths, as well as uniformly chosen weight-balanced BSTs, AVL trees, and left-leaning red-black trees.

BibTeX - Entry

@InProceedings{munro_et_al:LIPIcs.ESA.2021.70,
  author =	{Munro, J. Ian and Nicholson, Patrick K. and Benkner, Louisa Seelbach and Wild, Sebastian},
  title =	{{Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{70:1--70:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14651},
  URN =		{urn:nbn:de:0030-drops-146512},
  doi =		{10.4230/LIPIcs.ESA.2021.70},
  annote =	{Keywords: analysis of algorithms, universal source code, compressed trees, succinct data structure, succinct trees, tree covering, random binary search trees, range-minimum queries}
}

Keywords: analysis of algorithms, universal source code, compressed trees, succinct data structure, succinct trees, tree covering, random binary search trees, range-minimum queries
Collection: 29th Annual European Symposium on Algorithms (ESA 2021)
Issue Date: 2021
Date of publication: 31.08.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI